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Rotatory Brownian motion of a rigid dumbbell 
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The frictional torque on a dumbbell rotating with time-dependent angular 
velocity is calculated from the hydrodynamic interaction between the two ends 
of the dumbbell. This leads to the correlation function for the random torque 
in rotatory Brownian motion. Although the motion of each dumbbell end has 
the characteristics of a translational motion, the correlation function a t  large 
times decays like t-g, as in the case of a solid sphere. The correlation function 
may be calculated for the limiting case of very small angular displacements. 
The results for displacements of arbitrary magnitude are the same provided that 
terms quadratic in the angular velocity are negligible. 

1. Introduction 
The autocorrelation function G(t )  for the random force on a particle in transla- 

tional motion under stationary conditions is known (Case 1971) to  be related to 
the friction coefficient for this particle by the fluctuation dissipation theorem 

G(w)/2kT = 9 {B(u)}. (1) 

G(t)  = G(w) exp ( - iwt)  dw; ( 2 )  

Here G ( w )  and B(w) are Fourier time transforms, i.e. 

s”, 
B ( w )  is defined by the statement that - B ( w )  u ( w )  is the Fourier transform of the 
systematic force on the particle when it has a time-dependent velocity u(t). 
From early hydrodynamic studies (see, for example, Oseen 1927, p. 132) it is 
known that the frictional force on a sphere of radius a moving through a 
Newtonian liquid with velocity u(t) is 

Bop u(t) = <u + an-4 d ~ ( t  - 7)-4 d u / d ~  + &mo du/dt, (3) 

which means that B ( w )  = <+a( - iw)Q-$m,iw.  (4) 

Here < = 67~713, a = <av-t, m, = $7ra3p, ( 5 )  

s:, 
where 7 is the viscosity, p the density and v = q/p is the kinematic viscosiby of 
the liquid. In  the last section use will be made of the notation 

.-4st d7(t - 7)-$ d/d7 = d$/dt4; (6) 
- W  

cf. Kowalewski (1930, p. 35). The validity of (6) is confirmed by the Fourier 
transform: if the operation on the left-hand side is performed twice, the result 
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in Fourier space is a multiplication by - iw ,  which corresponds to the operation 

The results quoted thus far are based on the linearized Navier-Stokes equations. 
The function G(w) is known explicitly from work of Chow & Hermans (1972a) 
and shows that G(t )  for large t is proportional to t-8. 

Likewise, the autocorrelation function Q(t )  for the random torque on a particle 
in rotatory Brownian motion is related to the rotational friction by the relation 
given by Chow (1973): 

dldt . 

Q ( w ) / z k T  = g{fl(u)/fi(m)}, (7) 

where N ( w )  is the Fourier time transform of the systematic torque when the 
particle rotates with time-dependent angular velocity Q(t).  On the basis of N(w)  
for solid spherical particles Berne (1972) has shown, by a series expansion in 
powers of d, that Q(t )  a t  large times is proportional to t-8. Berne’s calculation 
concerned the autocorrelation function for the rotational velocity rather than 
the random torque, but these functions are related to each other and have similar 
asymptotic behaviour at large times. 

The problem considered in the present work is the rotational Brownian motion 
of a rigid dumbbell: two spheres of radius a are connected by a rigid rod of 
length 2L; the friction on the spheres is supposed to be given by (3), while the 
frictional force on the rod connecting these spheres is considered to be negligible. 
This model is representative of rod-shaped particles in general (Kirkwood 1956). 

The motion of each of the beads a t  the ends of the dumbbell has all the charac- 
teristics of translatory motion. It will be shown, however, that the asymptotic 
behaviour of Q ( t )  for large times is of the type t-% and not t-3. The treatment is 
based on the linearized Navier-Stokes equations. As shown by Chow (1973)) for 
particles with this symmetry there is no coupling between translatory and 
rotatory motion or between different components of the rotation. For this 
reason it is permissible to restrict our considerations to rotation in a fixed plane 
about a fixed centre. The frictional torque will be calculated from the forces on 
the two beads, taking into account the hydrodynamic interaction between them. 
To estimate this hydrodynamic interaction, use is made of Oseen’s results for 
the velocity produced by point forces. 

The motivation for this work is twofold. I n  the first place, the terms in (3) 
which are due to the inertia of the liquid play a role in all transport properties 
of polymer solutions (viscosity, flow birefringence, etc.). For example, as shown 
in a forthcoming paper, the contribution of the inertia terms to the intrinsic 
viscosity of elastic dumbbells in a steady shear flow may be as large as 20% 
when the viscosity of the solvent is low. Similar effects are to  be expected in 
solutions of rigid rod-like molecules, and these effects will be particularly pro- 
nounced in dynamic measurements a t  high frequencies (acoustical birefringence, 
dielectric loss), not only for rod-like particles but also for random coils. 

In  the second place, a comparison of the rotational Brownian motion of rods 
with that of spheres is of interest in connexion with work by Berne (1972) and 
by Chow (1973). I n  particular, we hope to stimulate work on the fundamental 
question raised a t  the end of the next section: is the asymptotic behaviour of 
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the correlation functions at  large times due primarily to the flow field at large 
distances and, if so, will it  be affected by the nonlinear terms in the hydrodynamic 
equations Z 

2. Hydrodynamic interaction for small angular displacements 
General expressions €or the velocity produced by a time-dependent force at  

a time-dependent position have been developed by Szu & Hermans (1973). They 
will be used in the next section. For the moment we observe that the relaxation 
time for the autocorrelation of rotational velocity is of order m/c, where m is the 
mass of a bead and 6 = 6nqa is the friction coefficient for steady translational 
motion of the bead. For most particles of coloidal or molecular dimensions, the 
total angular displacement during the relaxation time remains quite small, so 
that the hydrodynamic interaction is essentially that between two beads at  
fixed positions. It will be shown in the next section that the result obtained 
remains valid for arbitrarily large angular displacements if we consistently 
neglect all effects proportional to the second (or higher) power of the angular 
velocity. Such neglect is consistent with the linearization of the hydrodynamic 
equations. 

The procedure followed is similar to that discussed by Chow & Hermans 
(1972 b )  when considering the hydrodynamic interaction of two particles in 
translatory Brownian motion, where the positions of these particles remain 
essentially stationary during the relaxation time. Let the rotation take place 
in the x, y plane and suppose that the beads are at  positions (L, 0) and ( - L, 0). 
Let -Y,(t) and -Y2(t) be the forces in the y direction exerted on the liquid by 
the first and the second bead respectively. As shown by Burgers (1938), the 
force - Y2 produces a t  the position of bead 1 a velocity with y component 

t 
Vl(t)  = -m2 = - ( S q - 1  / d7Y2(7) (02-P/i3y2)$(t-7),  (8) 

- -m 

'02  represents the three-dimensional Laplace operator and operates with respect 
to the distance r = r(x, y ,  z )  between the two beads. 

If ul(t) = L i t ( t )  is the velocity of bead 1, it is clear that its velocity relative 
to its immediate surroundings is u . ~  - v1 and consequently 

Yl(t) = -Bo,[u,(t) - v,(t)l. ( 10 )  

The same relation applies to Y2, u2 and v2, and since u2 = - u1 ( = - u say) for 
all time, it is clear from the equations given that at  all times Y2 = -Yl = - Y 
and v2 = - v1 = - v. Taking Fourier time transforms we find 

v(w) = S(w)  Y(w),  Y(w) = - B ( w ) [ u ( w ) - v ( w ) ] .  (11 )  

Here S(o)  is the Fourier transform of the operator S,  and may be found from that 
25-2 
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of $ if, after performing the operation V2 - a2/ay2, we substitute x = 2 L ,  y = 0 
and z = 0 in the final result. This gives 

S ( W )  = ( 3 2 - / ~ i p w L ~ ) - l  [I - (1  + 2KL 4- 4K2L2) eXp ( - Z K L ) ] ,  ( 12 )  

where K = ( - i W / V ) & .  ( 1 3 )  

Y ( w )  = - B ( w ) u ( w )  [ l -B(w)S(w)]- l ,  

By eliminating v (w)  from (1 l), it is found that 

which means that the frictional torque on the dumbbell is 

Nfw) = L2Bfw)  Q(w)  [ 1 - B ( w )  X(0)] -1 .  ( 1 4 )  

Expanding the frictional factor in powers of w* we find 

( 1 5 )  
where use is made of the abbreviation 

/3 = l J ( l6nyL)  = 3a/8L.  ( 1 6 )  

There is no term proportional to  w* in (15). The w term is pure imaginary and 
therefore does not contribute to & ( w )  in ( 7 ) .  The real part of the w* term, which 
corresponds to t-4 behaviour at large times, is 

This becomes 10.6pa2L4v-& when L a, and 0.76pL6v-& in the limit a = L. The 
corresponding coefficient in Landau & Lifshitz (1959, p. 9 7 )  for a solid sphere of 
radius R is 5.92pR6v-4. 

The fact that the asymptotic behaviour a t  large times has the characteristics 
of rotational rather than translational Brownian motion suggests that this is 
related to the fluid flow a t  relatively large distances from the particle. However, 
it is well known (Oseen 1927, p. 166)  that the flow a t  large distances is not 
accurately described by linearized hydrodynamics. This raises the question as 
to the extent to which the behaviour at large times may be affected by the 
nonlinear, convective, terms in the Navier-Stokes equations. No attempt is 
made here to find an answer to this difficult question. 

3. Solution for arbitrary angular displacements 
Szu & Hermans (1973)  express the velocity a t  a point r produced by a time- 

dependent force F ( t )  acting a t  a time-dependent position h in the form of a series, 
which is written here as follows: 
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where s = r - h and R = I SJ ; a, and p, are numerical coefficients : a, = 1, Po = 1 ; 
a 1 -  - - 4  3' p 1 -  - 0 ; a 2 = g , p 2 = - 1  4 ;  a3 = --- &, p3 = &, etc. The operation dn/dtn 
for a half-integer n is defined by a generalization of (6) : 

I n  (18) we let v be the velocity produced a t  the position of bead 1 by the force 
which bead 2 exerts on the liquid. As explained in the preceding section, this 
force is equal to that which the liquid exerts on bead 1, and this is related to v by 
the equation 

Here u is the velocity of bead 1, i.e. 

- F = <(u - V) + a d d * ( u  - v)/dt* + &?no d ( u  - V ) / d t .  (20) 

= - w t )  e& (21) 

where e$ is the unit vector in the azimuthal direction at the position of bead 1. 
We find F (and thus the torque) as a function of u by eliminating v from (18) 
and (20). 

Equation (20) is a vector equation which can be immediately Fourier trans- 
formed, but (18) contains a mixture of both components of F ,  and its Fourier 
transform is not trivial. It is not difficuIt to show, however, that (18) is simplified 
considerably if we restrict ourselves to terms that are linear in SZ .  

Suppose that we define the orientation of the dumbbell at a time r by the angle 
$(r) it makes with some fixed reference axis. Then, as explained by Szu & 
Hermans (1973), the vector s is a function of the angle $. The differentiation 
of a product s(Q) F with respect to time gives 

d(SF) /d t  = s dF/dt  + (&/a$) QF, 

because d$/dt = Q. In  this result, SZF is of order Q2 and will therefore be omitted. 
It is easily verified that the same reasoning applies to any order of differentiation, 
whether integer or non-integer. For example, 

t 
n*d*(sF)/dts = 1 dr ( t  - 7)-+f(sF) /d7  

- m  

t 
= 1 dr ( t  - r)-* [s7 dF/d7 + (ds/dQ), SZT F7], 

--m 

where, again, the last term is of order SZ2. We follow this procedure consistently 
and remember that S ,  a t  time t ,  is equal to 2Le,(t), where e, is the unit vector 
in the radial direction at the position of bead 1. It is then easily verified that 
(18) leads to 

m 

n=O 
V ,  = ( 8 ~ 7 ) - '  C (2L),-l (a, +Pn) dsnF,/dtin + O(M2), 

m 

V$ = (8n~)- l  s (2L)n-1a,d*nF$/dt~n+O(SZ2), 
n=O 

where the subscripts r and $ denote radial and tangential components, re- 
spectively. combining this result with (20), and remembering that u has no 
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radial component, it follows that & and v, are zero for all time, or, rather, are of 
order Q2. The equations for F4 and vc can easily be solved. This leads to a result 
that is identical to that found in the preceding section, where i t  was assumed that 
the angular displacements remain small. 

I n  other words, the only appreciable contributions to the fluid flow a t  the 
position of bead 1 result from motions in which bead 2 occupies the angular 
position just opposite bead 1. With hindsight, it is not difficult to see why 
this must be so: in principle, all previous positions $ different from have an 
effect on the hydrodynamic flow at time t ,  but the time it takes the dumbbell 
to change its orientation from $ to becomes larger as Q becomes smaller, 
so that the effect of such previous positions on the liquid flow a t  time t becomes 
negligible, of order Q2. 

This work was supported by the National Science Foundation under Grant 
GP-33454. 
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